Data Analysis of Cosmic Microwave Background (CMB) Experiments

Matthew Abroe
University of Minnesota
7/23/2003

What is the CMB?

- □ Last interacted with matter at ~300,000 years after the Big Bang.
- Existence is a direct prediction of Big Band model.
- ☐ First detected by Wilson & Penzias (Nobel Prize 1965)
- □ 1% T.V. `fuzz' is CMB.

Observing the CMB - COBE (1992)

2.73 Kelvin Blackbody

Perfect blackbody -> radiation in thermal equilibrium

CMB Power Spectrum

- Encodes statistical information of anisotropies.
- Provides excellent method for comparing theory and data.

$$\Box T(\Box,\Box) = \Box a_{lm} Y_{lm}(\Box,\Box)$$

http://background.uchicago.edu/~whu/

MAXIMA

Balloon-borne experiment to measure CMB anisotropies at high resolution.

Matthew Abroe¹, Peter Ade², Julian Borrill^{3,4}, Pedro Ferreira⁵, Shaul Hanany¹, Andrew Jaffe⁶, Bradley Johnson¹, Adrian Lee^{3,7}, Bahman Rabii³, Paul Richards³, George Smoot^{3,7,8}, Radek

Stompor^{4,8,9}, Celeste Winant³.

University of Minnesota¹

Queen Mary and Westfield College²

University of California, Berkeley³

NERSC⁴

University of Oxford⁵

Imperial College⁶

Division of Physics, LBNL⁷

Space Sciences Laboratory, UCB⁸

Copernicus Astronomical Center⁹

Why do we need supercomputers?

- d is the pixelized anisotropy map, which has a multivariate Gaussian distribution with covariance matrix M.
- \square Maximize the likelihood L as a function of C_l .

$$\square 2 \ln L = N_P \ln |M| + d^T M^{\square 1} d$$

$$M_{ij} = \prod_{l} \frac{2l+1}{4l} C_{l} P_{l}(\cos \square_{ij})$$

- \square M_{ij} is a large dense matrix $(N_p \text{ by } N_p \text{ where } N_p \sim 90,000)$.
- □ Done with a Newton-Raphson technique for finding the zero derivative (matrix inversion and matrix-matrix multiplications).
- Described by Bond, Jaffe, Knox (1998), parallel implementation by Julian Borrill at NERSC (MADCAP).

MAXIMA-I power spectrum

- Highest resolution measurement of CMB anisotropy at the time.
- Computational resources are provided by NERSC and the Minnesota Supercomputing Institute (MSI).

Cosmological Parameter Estimation

WMAP & MAXIMA

WMAP & MAXIMA (cont.)

Similar structure seen in both maps!!

Cross Spectrum

- Measures correlation between two maps on various angular scales.
- Computationally intensive.
- Similar algorithm for power spectrum -> generalized to include two temperature maps.

Positive cross spectrum -> positive correlation in maps.

Abroe et al. (2003, in preparation)

CMB Polarization

- CMB photons are Thomson scattered off of free electrons -> induces linear polarization.
- The polarization signal is expected at $\sim 10\%$ of temperature signal (at several _K !!).
- \square Polarization can be described in terms of Stokes parameters: I, Q, and U (observables).
- These can be decomposed into curl free and divergence free components, called E and B by analogy to electromagnetism.

E type polarization

B type polarization

CMB Polarization (cont.)

(simulated maps)

MAXIPOL

- ☐ Balloon Borne experiment to measure the CMB polarization.
- □Same instrumentation as Maxima, outfitted with polarizer.
- □ First flight, Fall 2002 -> telemetry failure.
- □Successful Flight, Spring 2003. Data analysis in progress.

MAXIPOL-0 Launch (Fall 2002)

The Smithsonian thinks CMB is cool!!

Boomerang Info